منابع مشابه
Path Planning in a Dynamic Environment
Path planning is an important area in the control of autonomous mobile robots. Recent work has focused on aspects reductions in processing time than the memory requirements. A dynamic environment uses a lot of memory and hence the processing time increases too. Our approach is to reduce the processing time by the use of a pictorial approach to reduce the number of data used. In this paper, we p...
متن کاملOptimal Path Planning in a Dynamic Environment
The aim of this project is to study and implement path planning algorithms on a mobile robot working in a dynamic environment like warehouse delivering packages from one place to another. During its journey if the robot encounters any obstacle, it replans its trajectory and proceed to the target. The system was developed entirely in Robot Operating System(ROS) and Gazebo. A 2D occupancy grid ma...
متن کاملPath Planning of Unmanned Aerial Vehicles in a Dynamic Environment
The main goal of this research effort is to determine the optimal trajectory for an unmanned aerial vehicle (UAV) in a dynamic environment. A Model Predictive Control (MPC) approach is utilized to provide collision avoidance in view of pop-up threats and a random set of moving and stationary obstacles (no fly zones). The UAV path planning needs to adapt in near real-time to the dynamic nature o...
متن کاملqfd planning with cost consideration in fuzzy environment
در عصر حاضر که رقابت بین سازمان ها بسیار گسترش یافته است، مطالعه و طرحریزی سیستم های تولیدی و خدماتی به منظور بهینه سازی عملکرد آنها اجتناب ناپذیر می باشد. بخش عمده ای از رقابت پذیری سازمان ها نتیجه رضایتمندی مشتریان آنها است. میزان موفقیت سازمان های امروزی به تلاش آنها در جهت شناسایی خواسته ها و نیازهای مشتریان و ارضای این نیازها بستگی دارد. از طرفی کوتاه کردن زمان ارائه محصول/خدمات به مشتریان...
15 صفحه اولPath planning self-learning Algorithm for a dynamic changing environment
Safe and optimal path planning in a cluttered changing environment for agents’ movement is an area of research, which needs further investigations. The existing methods are able to generated secure trajectories, but they are not efficient enough to learn from their mistakes, especially when dynamics of the environment are concerned. This paper presents an advanced version of the Ant-Air algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2014
ISSN: 2156-5570,2158-107X
DOI: 10.14569/ijacsa.2014.050813